Search this site
DeepLearning
  • Home
    • Boltzmann Machine
    • Watson AI
    • jkhome
    • Share
  • DLtrain
    • Large Data-set
    • Large Model
    • AI Work Load
      • Talos™ II ( Power 9)
      • X86
      • Jetson Nano
    • Deploy AI
  • Visual Recognition
    • Applications
      • Agriculture
      • Gesture Recognition
      • Nalla Paru
    • IBM Watson VR
      • Watson Studio
      • Watson VR service
      • Custom Model
      • Train
      • Test
      • Deploy
      • Client APP
      • Recap
    • DLtrain VR
      • Bring Your Data-Set
      • Make Your Model
      • Train Your Model
      • Deploy Your Model
  • DL in IoT Edge
    • Open Power
      • A2O
      • Open-CE
      • TL-V
    • Jetson Nano
      • Setting Up
        • Resources
        • Installation
        • First Boot
        • JetPack
        • IO
        • Internet Access via Wi-Fi
        • RDP / SSH
        • git
        • nvcc
        • cmake 3.14
        • Python
      • Quick Demo
      • Hello World
      • Kernel Update
      • Compute via CUDA
        • CUDA 10.1 SDK
        • Vector Add in CUDA
        • MAT Mul in CUDA
        • Tensor RT
      • Inference Engine
        • Detectnet-Console
        • DLtrain
    • J7 App
      • Android SDK
      • Android NDK
      • J7 Source Code
      • Credential Update
      • Build
      • Generate APK
      • Install APK in Phone
      • Using J7
    • Ventilator
      • Biocontainment
      • Auscultation
      • Nurse
      • IoT Edge
    • IoTin5G
      • Part 1
      • Part 2
      • Part 3
DeepLearning
  • Home
    • Boltzmann Machine
    • Watson AI
    • jkhome
    • Share
  • DLtrain
    • Large Data-set
    • Large Model
    • AI Work Load
      • Talos™ II ( Power 9)
      • X86
      • Jetson Nano
    • Deploy AI
  • Visual Recognition
    • Applications
      • Agriculture
      • Gesture Recognition
      • Nalla Paru
    • IBM Watson VR
      • Watson Studio
      • Watson VR service
      • Custom Model
      • Train
      • Test
      • Deploy
      • Client APP
      • Recap
    • DLtrain VR
      • Bring Your Data-Set
      • Make Your Model
      • Train Your Model
      • Deploy Your Model
  • DL in IoT Edge
    • Open Power
      • A2O
      • Open-CE
      • TL-V
    • Jetson Nano
      • Setting Up
        • Resources
        • Installation
        • First Boot
        • JetPack
        • IO
        • Internet Access via Wi-Fi
        • RDP / SSH
        • git
        • nvcc
        • cmake 3.14
        • Python
      • Quick Demo
      • Hello World
      • Kernel Update
      • Compute via CUDA
        • CUDA 10.1 SDK
        • Vector Add in CUDA
        • MAT Mul in CUDA
        • Tensor RT
      • Inference Engine
        • Detectnet-Console
        • DLtrain
    • J7 App
      • Android SDK
      • Android NDK
      • J7 Source Code
      • Credential Update
      • Build
      • Generate APK
      • Install APK in Phone
      • Using J7
    • Ventilator
      • Biocontainment
      • Auscultation
      • Nurse
      • IoT Edge
    • IoTin5G
      • Part 1
      • Part 2
      • Part 3
  • More
    • Home
      • Boltzmann Machine
      • Watson AI
      • jkhome
      • Share
    • DLtrain
      • Large Data-set
      • Large Model
      • AI Work Load
        • Talos™ II ( Power 9)
        • X86
        • Jetson Nano
      • Deploy AI
    • Visual Recognition
      • Applications
        • Agriculture
        • Gesture Recognition
        • Nalla Paru
      • IBM Watson VR
        • Watson Studio
        • Watson VR service
        • Custom Model
        • Train
        • Test
        • Deploy
        • Client APP
        • Recap
      • DLtrain VR
        • Bring Your Data-Set
        • Make Your Model
        • Train Your Model
        • Deploy Your Model
    • DL in IoT Edge
      • Open Power
        • A2O
        • Open-CE
        • TL-V
      • Jetson Nano
        • Setting Up
          • Resources
          • Installation
          • First Boot
          • JetPack
          • IO
          • Internet Access via Wi-Fi
          • RDP / SSH
          • git
          • nvcc
          • cmake 3.14
          • Python
        • Quick Demo
        • Hello World
        • Kernel Update
        • Compute via CUDA
          • CUDA 10.1 SDK
          • Vector Add in CUDA
          • MAT Mul in CUDA
          • Tensor RT
        • Inference Engine
          • Detectnet-Console
          • DLtrain
      • J7 App
        • Android SDK
        • Android NDK
        • J7 Source Code
        • Credential Update
        • Build
        • Generate APK
        • Install APK in Phone
        • Using J7
      • Ventilator
        • Biocontainment
        • Auscultation
        • Nurse
        • IoT Edge
      • IoTin5G
        • Part 1
        • Part 2
        • Part 3

Visual Recognition in Agriculture

IoT in 5G Network – Research by Jayakumar. S PhD – Part 3 - TECHx MediaInnovation in creating optimal yet robust models by using deep learning convolutional neural network has led to low cost “customized

Case Study: Monitor Tomato Farm “Customization ready Visual Recognition Micro service”


One Teacher able to handle not more than 40 students, But Power AC922 expected to handle 2000 plus CUDA cores and 100 plus Tensor Cores, when AI workload assigned to Power AC922.
Report abuse
Page details
Page updated
Report abuse